圆锥曲线的参数方程(抛物线双曲线椭圆的区别列

知识大全 2022-07-30 20:04www.worldometers.cn知识大全

圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

·圆锥曲线的参数方程和直角坐标方程:

1)直线

参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)

直角坐标:y=ax+b

2)圆

参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )

直角坐标:x^2+y^2=r^2 (r 为半径)

3)椭圆

参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1

4)双曲线

参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)

5)抛物线

参数方程:x=2pt^2 y=2pt (t为参数)

直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )

圆锥曲线(二次非圆曲线)的统一极坐标方程为

ρ=ep/(1-e·cosθ)

其中e表示离心率,p为焦点到准线的距离。

Copyright © 2016-2025 www.worldometers.cn 全球网 版权所有 Power by

全球化,全球疫情,全球股市,全球新闻网,全球地图,全球通史,经济全球化,全球变暖,全球进化,