分部积分公式(sin根号x的不定积分分部积分法)

知识大全 2022-08-01 14:36www.worldometers.cn知识大全

计算过程如下:

设√x=t,则x=t^2,dx=2tdt。可以得到:

原式=∫sint*2tdt=2∫t*sintdt

=2∫td(-cost)

=-2tcost+2∫costdt

=-2tcost+2sint+C

=-2√xcos√x+2sin√x+C(以上C为常数)

扩展资料:

不定积分求法:

1、积分公式法。直接利用积分公式求出不定积分。

2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。

(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:根式代换法和三角代换法。

在实际应用中,代换法最常见的是链式法则,而用此代替前面所说的换元。

3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu

两边积分,得分部积分公式∫udv=uv-∫vdu。

常用不定积分公式

1、∫kdx=kx+C。

2、∫x^ndx=[1/(n+1)]x^(n+1)+C。

3、∫a^xdx=a^x/lna+C。

4、∫sinxdx=-cosx+C。

5、∫cosxdx=sinx+C。

6、∫sec^2(x)dx= tanx+C。

7、∫csc^2(x)dx=-cotx+C。

8、∫secxtanxdx=secx+C。

Copyright © 2016-2025 www.worldometers.cn 全球网 版权所有 Power by

全球化,全球疫情,全球股市,全球新闻网,全球地图,全球通史,经济全球化,全球变暖,全球进化,